永大環保
廢樹酯.離子交換樹脂.壓克力樹脂.廢油泥.廢油墨.廢溶劑.廢酸液.廢鹼液.廢膠.廢汙泥.廢水.廢木材.玻璃纖維.廢塑膠.廢藥渣.廠房拆除.生活垃圾等各種工業廢棄物處裡(申報代碼C-D類)~回收電子零件.電線.五金.貴金屬.含金物.庫存品.設備機台.電腦週邊商品.工廠下腳料.光電相關原件等資源回收物品.歡迎公司行號.機關團體來電洽詢指教 謝謝
曾先生:0931079790
電 話:03-4985998
傳 真:03-4986558
公司網址: http://www.yung-da.tw
上一頁下一頁
  • 廢樹枝清除

    廢樹枝清除

  • 工廠下腳料回收買賣

    工廠下腳料回收買賣

  • 矽廢料處理清除

    矽廢料處理清除

  • 離子交換樹酯處理清除

    離子交換樹酯處理清除

  • FRP風管處理(玻璃纖維)

    FRP風管處理(玻璃纖維)

  • FRP風管

    FRP風管

  • pc版回收

    pc版回收

  • PC版回收

    PC版回收

  • 夾子車外叫服務

    夾子車外叫服務

  • 電線回收買賣

    電線回收買賣

  • 電線回收買賣

    電線回收買賣

  • 廠房拆除

    廠房拆除

  • 夾子車外叫服務

    夾子車外叫服務

  • 廠房拆除

    廠房拆除

  • 廠房拆除

    廠房拆除

  • 廢紙回收買賣

    廢紙回收買賣

  • 廢塑膠處理

    廢塑膠處理

  • 廢樹脂處理

    廢樹脂處理

  • 廠房拆除

    廠房拆除

  • 廢樹脂處理

    廢樹脂處理

  • 廢甲苯事業廢水

    廢甲苯事業廢水

  • 廠房拆除

    廠房拆除

  • 廠房拆除

    廠房拆除

  • 氯苯蒸餾殘渣處理

    氯苯蒸餾殘渣處理

  • 廢膠處理

    廢膠處理

  • 廢硝酸處理

    廢硝酸處理

  • 電線回收買賣

    電線回收買賣

  • 廢玻璃處理

    廢玻璃處理

  • 廢電池回收買賣

    廢電池回收買賣

  • 廢電池回收買賣

    廢電池回收買賣

  • 廢鐵回收買賣

    廢鐵回收買賣

  • 電線皮處理

    電線皮處理

  • 一頓桶回收買賣

    一頓桶回收買賣

  • 機械設備回收買賣

    機械設備回收買賣

  • 塑膠回收買賣

    塑膠回收買賣

  • 過期商品銷毀

    過期商品銷毀

  • 玻璃纖維處理

    玻璃纖維處理

  • 混和五金回收買賣

    混和五金回收買賣

  • 機械設備回收買賣

    機械設備回收買賣

  • 廢鐵回收買賣

    廢鐵回收買賣

  • 混合五金回收買賣

    混合五金回收買賣

  • 0013廢橡膠處理.jpg

    0013廢橡膠處理

  • 治具回收買賣

    治具回收買賣

  • 混合五金回收買賣

    混合五金回收買賣

  • 靜電袋處理

    靜電袋處理

  • 混合五金回收買賣

    混合五金回收買賣

  • 電子庫存回收買賣

    電子庫存回收買賣

  • 面板玻璃處理

    面板玻璃處理

  • 廢溶劑處裡

    廢溶劑處裡

  • 油性丙烯處理

    油性丙烯處理

  • 混合五金回收買賣

    混合五金回收買賣

  • 偏光片處理

    偏光片處理

  • PC版回收買賣

    PC版回收買賣

  • 電腦周邊回收買賣

    電腦周邊回收買賣

  • 廢塑膠處理

    廢塑膠處理

  • 顯示卡回收買賣

    顯示卡回收買賣

  • 玻璃纖維處裡

    玻璃纖維處裡

  • 顯示卡回收買賣

    顯示卡回收買賣

  • 玻璃纖維絲處理

    玻璃纖維絲處理

  • 機械設備回收買賣

    機械設備回收買賣

  • 玻璃纖維處理

    玻璃纖維處理

  • 機械設備回收買賣

    機械設備回收買賣

  • 0023玻璃纖維.jpg

    0023玻璃纖維

  • 破碎機回收買賣

    破碎機回收買賣

  • 機械設備回收買賣

    機械設備回收買賣

  • 廢鐵回收買賣

    廢鐵回收買賣

  • 廢木材處理

    廢木材處理

  • 連接器回收買賣

    連接器回收買賣

  • 廢電線處理

    廢電線處理

  • 電線回收買賣

    電線回收買賣

  • 繼電器回收買賣

    繼電器回收買賣

  • 廢棄物清除

    廢棄物清除

  • 碳棒頭處裡

    碳棒頭處裡

  • 混合五金回收買賣

    混合五金回收買賣

  • 廢玻璃處理

    廢玻璃處理

  • 馬達回收買賣

    馬達回收買賣

  • 廢玻璃處理

    廢玻璃處理

  • 廢棄物處裡

    廢棄物處裡

  • 建築廢棄物處理

    建築廢棄物處理

  • 面板玻璃處理

    面板玻璃處理

上一頁下一頁

您尚未登入,將以訪客身份留言。亦可以上方服務帳號登入留言

其他選項
  • 葉青峻
    葉青峻 2021/03/10 11:17

    常見的半導體材料有矽、鍺、砷化鎵等
    /
    晶片測試
    晶片處理高度有序化的本質增加了對不同處理步驟之間度量方法的需求。晶片測試度量裝置被用於檢驗晶片仍然完好且沒有被前面的處理步驟損壞。如果If the number of dies—the 積體電路s that will eventually become chips—當一塊晶片測量失敗次數超過一個預先設定的閾值時,晶片將被廢棄而非繼續後續的處理製程。
    /
    晶片測試
    晶片處理高度有序化的本質增加了對不同處理步驟之間度量方法的需求。晶片測試度量裝置被用於檢驗晶片仍然完好且沒有被前面的處理步驟損壞。如果If the number of dies—the 積體電路s that will eventually become chips—當一塊晶片測量失敗次數超過一個預先設定的閾值時,晶片將被廢棄而非繼續後續的處理製程。

    /
    步驟列表

    晶片處理
    濕洗
    平版照相術
    光刻Litho
    離子移植IMP
    蝕刻(干法蝕刻、濕法蝕刻、電漿蝕刻)
    熱處理
    快速熱退火Annel
    熔爐退火
    熱氧化
    化學氣相沉積 (CVD)
    物理氣相沉積 (PVD)
    分子束磊晶 (MBE)
    電化學沉積 (ECD),見電鍍
    化學機械平坦化 (CMP)

    IC Assembly and Testing 封裝測試
    Wafer Testing 晶片測試
    Visual Inspection外觀檢測
    Wafer Probing電性測試
    FrontEnd 封裝前段
    Wafer BackGrinding 晶背研磨
    Wafer Mount晶圓附膜
    Wafer Sawing晶圓切割
    Die attachment上片覆晶
    Wire bonding焊線
    BackEnd 封裝後段
    Molding模壓
    Post Mold Cure後固化
    De-Junk 去節
    Plating 電鍍
    Marking 列印
    Trimform 成形
    Lead Scan 檢腳
    Final Test 終測
    Electrical Test電性測試
    Visual Inspection光學測試
    Baking 烘烤
    /
    有害材料標誌

    許多有毒材料在製造過程中被使用。這些包括:

    有毒元素摻雜物比如砷、硼、銻和磷
    有毒化合物比如砷化三氫、磷化氫和矽烷
    易反應液體、例如過氧化氫、發煙硝酸、硫酸以及氫氟酸

    工人直接暴露在這些有毒物質下是致命的。通常IC製造業高度自動化能幫助降低暴露於這一類物品的風險。
    /
    Device yield

    Device yield or die yield is the number of working chips or dies on a wafer, given in percentage since the number of chips on a wafer (Die per wafer, DPW) can vary depending on the chips' size and the wafer's diameter. Yield degradation is a reduction in yield, which historically was mainly caused by dust particles, however since the 1990s, yield degradation is mainly caused by process variation, the process itself and by the tools used in chip manufacturing, although dust still remains a problem in many older fabs. Dust particles have an increasing effect on yield as feature sizes are shrunk with newer processes. Automation and the use of mini environments inside of production equipment, FOUPs and SMIFs have enabled a reduction in defects caused by dust particles. Device yield must be kept high to reduce the selling price of the working chips since working chips have to pay for those chips that failed, and to reduce the cost of wafer processing. Yield can also be affected by the design and operation of the fab.

    Tight control over contaminants and the production process are necessary to increase yield. Contaminants may be chemical contaminants or be dust particles. "Killer defects" are those caused by dust particles that cause complete failure of the device (such as a transistor). There are also harmless defects. A particle needs to be 1/5 the size of a feature to cause a killer defect. So if a feature is 100 nm across, a particle only needs to be 20 nm across to cause a killer defect. Electrostatic electricity can also affect yield adversely. Chemical contaminants or impurities include heavy metals such as Iron, Copper, Nickel, Zinc, Chromium, Gold, Mercury and Silver, alkali metals such as Sodium, Potassium and Lithium, and elements such as Aluminum, Magnesium, Calcium, Chlorine, Sulfur, Carbon, and Fluorine. It is important for those elements to not remain in contact with the silicon, as they could reduce yield. Chemical mixtures may be used to remove those elements from the silicon; different mixtures are effective against different elements.

    Several models are used to estimate yield. Those are Murphy's model, Poisson's model, the binomial model, Moore's model and Seeds' model. There is no universal model; a model has to be chosen based on actual yield distribution (the location of defective chips) For example, Murphy's model assumes that yield loss occurs more at the edges of the wafer (non-working chips are concentrated on the edges of the wafer), Poisson's model assumes that defective dies are spread relatively evenly across the wafer, and Seeds's model assumes that defective dies are clustered together.[25]

    Smaller dies cost less to produce (since more fit on a wafer, and wafers are processed and priced as a whole), and can help achieve higher yields since smaller dies have a lower chance of having a defect. However, smaller dies require smaller features to achieve the same functions of larger dies or surpass them, and smaller features require reduced process variation and increased purity (reduced contamination) to maintain high yields. Metrology tools are used to inspect the wafers during the production process and predict yield, so wafers predicted to have too many defects may be scrapped to save on processing costs.[26]

參加的共同相簿集

相簿所有人物

  • 曾瀚葳

相簿列表資訊

最新上傳:
2024/05/02
全站分類:
不設分類
本日人氣:
0
累積人氣:
285

相簿位置